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Abstract. The so-called innovations form of the likelihood function implied by a
stationary vector autoregressive-moving average model is considered without directly
using a state—space representation. Specifically, it is shown in detail how to compute the
exact likelihood by an adaptation to the multivariate case of the innovations algorithm of
Ansley (1979) for univariate models. Comparisons with other existing methods are also
provided, showing that the algorithm described here is computationally more efficient than
the fastest methods currently available in many cases of practical interest.
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1. INTRODUCTION

Let a multivariate (vector) time series wi,w;...,w, be generated by an
m-dimensional (m>2), stationary, Gaussian process {W,},_,,, , assumed to
be adequately represented by a vector autoregressive-moving average (ARMA)
model of the form

®(B)W, = O(B)A, (1)
where
OB)=1—®B— - — @B
OB)=1-0B—---—0O,B1
B is the usual backshift operator (i.e., BW, = Wt_k); o,(i=1,...,p),
O;(i=1,...,9) and p are mxm, mxm and mx 1 parameter matrices,

respectively; W, = W, — u, with p = E[W/]; and {A},_, +1... 1s an m-dimensional
zero-mean Gaussian white-noise process with covariance matrix ¢>Q, where
a? > 0 and Q(m x m) is symmetric positive definite. For stationarity, it is required
that the roots of |®(B)| = 0 lie outside the unit circle. In what follows, all of the
elements of ®;(i = 1,...,p), ©;(i =1,...,q), p and Q are stacked together into a
single vector B for notational convenience.

It may be noted that the specification of E[A,A]] above as the product ¢°Q, is
just a useful device for obtaining exact maximum likelihood estimates by
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maximizing a concentrated log-likelihood as a function of the parameter vector
p only. A few comments on this subject are given in Section 3; in particular, the
fact that the decomposition ¢?Q is not unique raises no problem in the
estimation of FE [AtA;], since, on convergence of the estimation algorithm,
interest lies in the product ¢’>Q, but not in ¢> nor in Q by itself; for the
purpose of just computing the exact likelihood function, any decomposition of
E[AA]] is valid.

As noted above, given an observed time series w = (W;,..., W)’ consisting of
n mx 1 data vectors, the functional form of the corresponding likelihood
function L(B, o?|w) is required for computing exact maximum likelihood estimates
of p and ¢?. The likelihood function has exactly the same form as the density
function of the mn x 1 random vector W = (W}, ..., W')'; hence, for a Gaussian
process, the ‘direct’ form of L(B, s?|w) is

L(B,o*|w) = (270%) " Ew| P exp{ - (207) WG W | 2)

where W= (W,...,w,), W,=w,—p(t=1,...,n), Zw =0 E[WW'] (which
depends only on B), and W = (Wy,...,W')". For practical purposes, the form
(2) of L(B,c?|w) has two main drawbacks:

(1) It explicitly requires computing the theoretical autocovariance matrices of
orders 0 through n — 1 implied by (1).

(i1) It implicitly requires computing both the inverse and the determinant of a
symmetric matrix of order mn.

Many authors have derived explicit forms for W X' W and [Ew|, in both the scalar
(m =1) and vector (m>2) cases, which require much less computational effort
than a direct evaluation.

In the scalar case, methods based on different implementations of the Kalman
filter applied to a suitable state—space representation of (1), are often considered
the most efficient ones on the basis of what are usually known as ‘theoretical
operation counts’. In particular, Pearlman (1980, p. 232) states that, to compute
the exact likelihood function when m = 1

Ny =n{p+<q+1)2<qu4)}

time consuming operations (multiplications or divisions involving floating-point
numbers) are required by the algorithm of Ansley (1979); note that N, is quadratic
in ¢ (the order of the moving average part of the model) but only linear in p (the
order of the autoregressive part of the model). Also, Kohn and Ansley (1985,
p. 229) state that the algorithm of Pearlman (1980) as implemented in M¢élard
(1984), requires

Npy = n(2p+3q +2)

operations when p < g + 1, and
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Ny = n(p+ 4 + 6)

when p>qg + 1; see also Mélard (1984, p. 108). Finally, except for the last p
observations, the method of Kohn and Ansley (1985) requires

Nkq4 =n(p+3q+2)

operations. These theoretical counts have often been used to claim that
methods based on the Kalman filter — ie., Pearlman (1980), M¢lard
(1984) and Kohn and Ansley (1985) — are the most efficient ones in the
scalar case.

However, it should be noted that, in addition to either Npy, Np,, or Ngy, every
method based on the Kalman filter for scalar models requires a significant number
of operations to start the filtering recursions. This number of ‘preliminary’
operations is not so siginificant for other methods, such as the ones of Ansley
(1979) and Ljung and Box (1979). Specifically, to start the filtering recursions,
methods based on the Kalman filter require computing the theoretical autoco-
variances of orders 0 through g, with ¢ = max(p,¢q), whereas the methods of
Ansley (1979) and Ljung and Box (1979) require computing the theoretical
autocovariances of orders 0 through only p — 1; in particular, no theoretical
autocovariances are required by methods outside the state—space framework when
p = 0. This fact implies that:

(i) with regard to the number of preliminary operations, computational
savings can be acheived outside the state—space framework when g > p
(especially if ¢ is large and much greater that p) that mitigate, to some
extent, the effects of Ny being quadratic in ¢, and

(i) a comparison based solely on theoretical counts such as Ny, Npy, Np,, and
Nky4, can be misleading, since those counts ignore the computational burden
required, for instance, to start the Kalman filter.

As an example of this situation, Mélard (1984, p. 108) states that such burden is
quadratic in p, ¢ and g, although this fact is ignored in theoretical comparisons
with other methods presented in that paper. Furthermore, one of the main
reasons of the computational efficiency of the methods of M¢lard (1984) and
Kohn and Ansley (1985) for scalar models, is that both methods use a special
algorithm for computing the theoretical autocovariance function, which cannot
be adapted for use in the multivariate case; see, for example, Tunnicliffe-Wilson
(1979), and note that Mélard (1984, pp. 108-9) compares his algorithm with the
method of Ansley (1979) ‘improved’ with the algorithm of McLeod (1975), which
is not as efficient as that of Tunnicliffe-Wilson (1979).
The discussion above implies that:

(i) there may exist practical situations in which the method of Ansley (1979) can
be implemented to perform more efficiently than methods based on the
Kalman filter, even when ¢ is moderately large, in both the scalar and vector
cases, and
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(i) comparisons based solely on theoretical counts can be misleading and
should be avoided in favour of those based on actual counts.

Furthermore, actual counts are much easier to compute accurately than
theoretical counts, since actual counts can be obtained simply by using an
integer counter within the actual program implementing whatever algorithm,
which is initialized to zero and increases by one unit whenever either a
multiplication or a division involving floating-point numbers is performed.
Actual operation counts for several values of m>2,n,p and ¢, have been used
in Mauricio (1995, 1997) to study the relative computational efficiency of
different algorithms for computing the exact likelihood implied by vector
ARMA models. Results reported in those papers show that the algorithms of
Shea (1989) and Mauricio (1997) are the most efficient ones previously given in
the literature.

This paper presents a detailed alternative to currently existing methods for
computing both W'Xy'W and |Zw| in (2) — one which does not seem to have been
published previously. The method presented here is an adaptation of the
algorithm due to Ansley (1979) for scalar models which, in turn, is an example of
a class of methods which are based on the so-called ‘innovations’ form of
L(B,a*|w). The innovations form of the exact likelihood for ARMA models is
discussed, for example, in Box, et al. (1994, ch. 7) and in Reinsel (1997, ch. 5). In
particular, Reinsel (1997, pp. 145-7) describes a method for computing the exact
likelihood in the multivariate case, which starts being similar to that of Ansley
(1979), but then proceeds, in a rather complicated way, being similar to recursive
methods based on the Kalman filter; note also that details on the practical
implementation of the computations required by the method of Reinsel (1997) are
omitted in that book.

From a notational standpoint, a very simple innovations form of the
exact likelihood function of vector ARMA models is derived in Section 2 of
this paper. In Section 3, detailed descriptions are given for computing the
clements of the form of L(B,o?|w) derived in Section 2. A comparison
between the algorithm presented in Section 3 and other existing methods for
computing L(B,*|w) is given in Section 4. Finally, in Section 5, conclusions
are summarized.

2. AN INNOVATIONS FORM OF THE EXACT LIKELIHOOD FUNCTION

Consider a given time series w = (W,,...,w') and let W= (W/,.... W)’ (an
mn x 1 vector), A=(A],...,A)) (an mnx1 vector) and U, =
(W’l_p’___TW(),A’l_qug)' (an m(p+q) x 1 vector). Then, using (1) with 7=

I,...,n, w can be regarded as a particular realization of a random vector W
which can be adequately represented by the model

DoW = DeA + VU, (3)
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where Dg and De are mn x mn lower triangular block-matrices with identity
matrices of order m on the main diagonal, and —®; and — @y, respectively, down
the kth subdiagonal, and V is an mn x m(p + ¢g) block-matrix which can be
partitioned as V = [Go Geg], with

D, ®,; ®,, - @]
0 @ @, - @
0 0 ®, - ®
Go = :
mrxop 0 0 @,
0 0 0 0
00 0 0
B —®q —®q_1 —®q_2 -0
0 -0, —0, | ~0,
0 0 -0, ~0;
Go = :
g 0 0 0 -0,
0 0 0 0
L0 0 0 0 |

Note that letting g = max(p,q), V can also partitioned as V = [V 0], with the
mg x m(p+q) matrix V; containing the first mg rows of V. If an
m(p +q) x m(p + ¢q) matrix Q is now defined by E[U.U’] = ¢*Q, then, noting
that A ~ NJ0,0°(I, ® Q)], U, ~ N(0,¢°Q) and E[U,A’] =0, it follows from (3)

that the random vector Y = DeW has a zero-mean normal distribution with
covariance matrix E[YY'] = Xy, where

Ty = Do (I, ® Q)Dy + VQV’
V,QV, 0} (4)

= De(I, ® Q)Dg + { 0 0

Recalling the special structure of Dg, the only nonzero m x m blocks that form
the main diagonal and the lower triangle of the symmetric matrix Dg (I, ® Q)Dg
are given by

j—1
0,,.._QO, fori=1,....g+1;j=1,...,i
[D0(1n®Q)Db]ij: ; Q0% B

[D@(I,,®Q)D’(,)]I._1J_1 fori=q+2,....n;j=i—gq,...,i
(5)
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where the convention @y, = —1I,, is used. Hence, considering Xy as an n X n array
whose elements are m x m blocks, it follows from (4) and (5) that Xy is a block-
band matrix with maximum block-bandwidth g for the first g block-rows, and
block-bandwidth ¢ thereafter. A similar proof of this result can be found in
Reinsel (1997, p. 145).

As an illustration, consider an m-variate ARMA(3,1) model. In this case, it can
be seen, from (4) and (5) with p = 3 and ¢ = 1, that

X X5V
Xor X» X5
Vi X3 Xs; D,
Dy Dy Dl
Ty = _ (6)
Dy Dy Dl
Dy Dy Dy
D43 Dy

where V;; represents an m x m block whose elements depend on V;QV/ only,
D;; represents an m x m block whose elements depend on Dg (I, ® Q)Dg only,
and X;; represents an m x m block whose elements depend on both of
ViQV| and De(I, ® Q)Dg. As a further example, consider an m-variate
ARMA(2,2) model. In this case, it can be seen, from (4) and (5) with
p=gq =2, that

[ X X,Zl D’31

Xy X» Dj, Dj

D;; D3 D3 D}, Dj
Sy : : : :

I
—
~J
~

D;; D3y Ds; D}, D)
D;; Dy, Ds; Dj,
D3; D3y D33

The illustrative forms of Xy in (6) and (7) are useful for understanding the need
for a special procedure for factoring Xy, which is discussed in Section 3.

Returning to the random vector Y = DeW and recalling that D¢ is a unit
lower triangular matrix, it turns out that the Jacobian of the transformation
W= D(},IY is unity, so that the density function for W has the same form as
the density function for Y. Thus, the exact likelihood function (2) can be
written as

L(B.o*[w) = (2ra) ""*[Zy| " exp{~(26°)y'Ey 'y} (8)

where y = DgW is a vector of ‘derived’ observations, in the sense that y is derived
from the original time series w through a simple linear transformation. From a
computational standpoint, the form (8) of the required likelihood function has
two important advantages over the direct form (2):
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(i) It explicitly requires computing the theoretical autocovariance matrices
implied by (1) of orders 0 through only p — 1.

(1) It implicitly requires computing both the inverse and the determinant of a
symmetric block-band matrix, which has the vast majority of its elements
equal to zero.

If L represents the Cholesky factor of Xy (i.e., Xy = LL' with L lower
triangular, having exactly the same block-band structure as Xy), then (8) can be
finally written as

L(B,*|w) = (2na”) " 2[L| " exp{~(20°)'¢'e} ©)

where e = L'y = L !DgWw can be regarded as a particular realization of a
random vector E = LY following a N(0, ¢°I) distribution. Equation (9) is the
innovations form of the exact likelihood function which, for m = 1, corresponds
to equation (3.2) in Ansley (1979).

In the case of pure autoregressive models, it follows from (4) with ¢ = 0 (which
implies that Dg = I) that

@, ®Q)+V,QV] 0
m= |, 150 o

which is a block-diagonal matrix. Hence, when ¢ = 0 the Cholesky factor of Xy
has the form

1% ) h

where L, and R represent the Cholesky factors of (I, ® Q)+ V;QV/ and Q,
respectively. It follows from (4) and (10)—(11) that obtaining L. when ¢ =0 is a
much simpler computational task than obtaining L. when ¢ # 0. Also, note that
for m =1, (10) and (11) correspond to equation (3.3) in Ansley (1979). As a
final remark, it may be noted that the transformation Y = DeW used in this
paper is not identical to the one used by Ansley (1979), although it is
computationally equivalent in the sense that both transformations generate
random vectors whose covariance matrices have exactly the same band
structure.

3. COMPUTATION OF THE EXACT LIKELIHOOD FUNCTION

The scale parameter 6> may be differentiated out of (2) to yield the following
concentrated log-likelihood:

L.(Blw) = —% log(2m) — log(mn) + 1 + log{ (W W)[Zw|"/ <m">}]

Hence, for estimation purposes, maximizing (2) is equivalent to minimizing
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F(Bw) = (WEy'W)[Ew| " (12)
where it can be seen from (2), (8) and (9) that
WEINW=yI{'y=¢ce= %etz (13)
=1
and that
] = v = L = ] (14)
—

It is now shown in detail how to compute e and L in (13)—~(14) which, in turn,
can be used to evaluate numerically (9) and (12). Recall that e is the solution
to Le =y, with y = Dew, and that L is the Cholesky factor of the symmetric
matrix given in (4). To evaluate (4), note that Q= ¢ 2E[U U] with

U.=W,_ ... ,W:),A’H]7 ..., Ay)’, so that
B C
Q= lC’ (Iq®Q)]

where the (i, j)th block of B is
Bij = G_zE [Wf—pwlj—p]

Irj_l' for l,]zl,,p
and the (i, j)th block of C is
Cij = GizE [Wi—PA;—q]
= Nj_i—g+p forl:1,7p,]:17,q

Because B is symmetric and £ [W,_,-A;] = 0 fori > 0, to compute B and C only the
theoretical autocovariance matrices I';y for k =0,1,...,p — 1, and the theoretical
cross-covariance matrices A; for k =0,—1,...,—¢g + 1, are needed. An efficient
method for carrying out those computations can be found in Mauricio (1997).
Note that existing methods based on the Kalman filter — e.g., Shea (1989) —
require computing I'; for £k =0,1,...,¢g to start the filtering recursions, which
implies a computational overload with respect to other methods when ¢ is large
and much greater than p (in particular, when p = 0).

Once the elements of Q are available, the (i, j)th block (i =1,...,¢;j=1,...,i)
of the symmetric matrix V;QV/ in (4) is given by

p—i q—i
(ViIQV), = @, (Frij— > Oy iFripiiy (15)
k=0 k=0

where, for j=1,...,9,
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( p—i q—i
§ / E / P
k=j—i k=j—i
F;= .
2p—i
/ ! ’ .
E Ap_q_kd)zp_k_iﬂ-—Q®q+p_i+j i=p+1,....p+q
\ k=p+j—i

with Ty =T" , for k <0, A, =0 for k >0 and ®; = 0 for i > q.

The only nonzero m x m blocks that form the main diagonal and the lower
triangle of the symmetric matrix Dg (I, ® Q)Dyg in (4), can be computed using (5).
Alternatively, letting Hy = —Q and H; = Q,Q(i = 1,...,q), it follows from (5)
that

j—1
_Hl—]+ Hk_;,_l_/@;c forlzl,,q—Fl,‘]:l,,l
[Do(I®Q)Dg],= ;;

[D@(I®Q)D’®L7U71 fori=q+2,...,n; j=i—gq,...,i
(16)

which may save a few operations in comparison to a direct implementation of
(5). Equations (15) and (16) can be used to compute the nonzero elements of
the band matrix Xy in (4) which, in turn, has to be factored to obtain L and
IZy| = |L|*. It should be noted at this point that Xy is not a band matrix in
the usual sense; hence, if one wishes to completely exploit the special structure
of Xy, an algorithm for factoring symmetric band matrices, such as the one
published by Martin and Wilkinson (1965), should not be used directly. To
see this, recall the examples given in (6) and (7); taking m = 2, it can be seen,
for instance, that the seventh row of Xy in (6) has only two nonzero elements
to the left of the corresponding diagonal element, whereas it has three
nonzero elements to the right. Also, taking m = 4, it can be seen, for instance,
that the twelfth row of Xy in (7) has eleven nonzero elements to the left of
the corresponding diagonal element, whereas it only has eight nonzero
elements to the right. Hence, considering Xy as an mn x mn array, it follows
that Xy is a special band matrix with different left and right bandwidths (a
situation that does not occur when m = 1) which, furthermore, vary from the
first mg rows to the remaining m(n — ¢g) rows (a situation that is shared with
the case m =1).

I have devised a suitable algorithm for computing the Cholesky factor L of Xy
and |Zy| = |L|*, which takes into account the subtleties mentioned above for any
values of m, p and ¢. Basically, given any values for m, p and ¢, the algorithm
keeps tract of the actual left and right bandwidths for each row of Xy, so that
operations involving zero elements are never performed. Using that algorithm
results in noticeable computational savings in comparison to a direct use of the
algorithm of Martin and Wilkinson (1965), which requires specifying for every
row of Xy a greater bandwidth than the actual one.
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In the case of pure autoregressive models, L. should be obtained from (11) by
factoring both of the mp x mp and m x m matrices (I, ® Q) + V;QV/] and Q using
standard algorithms for symmetric matrices with no further special structure.
Also, using (10)—(11), |Xy| is given in this case by

(I, ® Q) + ViQV,[|Q["? = |L, R

Additionally, using certain results presented in Ansley (1979) and Mauricio
(1997), it turns out that the procedure for obtaining L and [Ey| = |L|* described
above provides a necessary (although not sufficient, expect when ¢ = 0) check on
the stationarity of the model. This is due to the following facts:

(1) The system of linear equations which has to be solved to obtain the
autocovariance matrices appearing in (15) is singular if and only if at least
one zero of |@(B)| lies on the unit circle.

(i1) If Xy is not positive-definite (in which case L does not exist), then at least
one zero of |®(B)| lies outside the unit circle.

Note, however, that existence of the Cholesky decomposition does not guarantee
that the model is stationary except when ¢ = 0; in fact, when ¢ = 0, the Cholesky
factor L, of (I, ® Q) + V,QV] exists if and only if all the zeros of |®(B)| lie
outside the unit circle.

Finally, to obtain the solution to Le =y, with y = D¢Ww, note that

P
Yy=W—» ®w._; fort=1..n
i=1

with w; = 0 if j < 1. Then, e can be obtained through forward substitution in
Le = y without explicitly computing L™'; in fact, the recursive calculations of each
row of L and the corresponding element of e can be combined in a single step as
suggested by Ansley (1979). Again, noticeable computational savings can be
obtained if an algorithm which takes into account the special structure of L is used
instead of a direct implementation of the algorithm of Martin and Wilkinson (1965).
For the sake of completeness, recalling equations (13) and (14), the objective
function (12) for exact maximum likelihood estimation of p can be written as

F(lw) = (e'e)[L[/"™
— ¢

€

3

z 17
2 .
=1
ét = |L|1/(mn)e,

which can be minimized by using nonlinear least squares methods. Although the
method for computing L. automatically provides a necessary check for stationa-
rity, this check is not sufficient expect when ¢ = 0. Furthermore, the algorithm
described in this paper can be used for either invertible or noninvertible models.
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Hence, at every iteration of the algorithm used for minimizing (17), the
computation of the objective function should be complemented at least with
specific checks on the invertibility of the model; otherwise, the least squares
algorithm might converge outside the invertibility region. Without specific checks
on the stationary of mixed models, the least squares algorithm might converge (at
least in theory) to a nonstationary point; although this is rare in practice, the roots
of |®(B)| = 0 should be computed on convergence so as to ensure that the final
estimates are admissible.

4. COMPARISON WITH EXISTING PROCEDURES

The algorithm described in Section 3 for computing W Z‘_,VIW and |Xw| has been
developed in the C programming language, along with C versions of the
algorithms of Shea (1989) and Mauricio (1997); a comparison between the
FORTRAN 77 versions of those two algorithms can be found in Mauricio (1997).
The C code for the three algorithms has been compiled using the Borland®
BCC32® compiler with no optimization options at all; the resulting programs
have been executed on an IBM® compatible PC. Actual operation counts have
been implemented within the C code as explained in Section 1.

To measure the relative computational efficiency of the procedure described in
Section 3, the exact likelihood function has been evaluated for a variety of vector
ARMA models. In Table I, the ratio between the actual numbers of floating point
multiplications and divisions required by the algorithm of Shea (1989) and those
required by the algorithm described in Section 3, is presented for every model
considered.

It can be seen that the algorithm of Shea (1989) requires less time-consuming
operations that the new algorithm only for models with ¢ large and much greater
than p. Otherwise, the new algorithm performs faster than the algorithm of Shea
(1989), by a factor close to three in many cases. Also, the relative efficiency of the
new algorithm increases with the dimension m of the model, whereas it does not
decrease appreciably with the series length n. Thus, except for most cases with ¢
large and much greater than p, all of the ratios are advantageous to the new
algorithm, irrespective of the values of m and n.

In Table II, the ratio between the actual numbers of floating point multipli-
cations and divisions required by the algorithm of Mauricio (1997) and those
required by the algorithm described in Section 3, is presented for every model
considered.

The algorithm of Mauricio (1997) requires less time-consuming operations than
the new algorithm for models with ¢ large and greater than or equal to p, the most
appreciable gain occurring when ¢ is much greater than p. Otherwise, the new
algorithm performs faster than the algorithm of Mauricio (1997). The relative
efficiency of the new algorithm does not decrease appreciably with the series
length n, although, as opposed to the comparison with the algorithm of Shea
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TABLE I

RATIOS BETWEEN THE ACTUAL NUMBERS OF TIME-CONSUMING OPERATIONS REQUIRED BY THE ALGORITHM
OF SHEA (1989) AND THOSE REQUIRED BY THE NEW ALGORITHM, TO EVALUATE THE EXACT LIKELIHOOD
FuncTion FOrR VARrRIOUS MODELS

m =2 m =4

Models n=5 n=100 n=200 n=50 n=100 n =200
AR(1) 1.53 1.28 1.15 6.31 4.17 2.76
AR(2) 1.67 1.40 1.22 422 3.63 2.92
MA(1) 3.02 3.04 3.06 3.95 4.00 4.02
MA(2) 2.14 2.16 2.17 2.50 2.53 2.54
ARMA(1,1) 3.00 3.03 3.05 4.96 4.58 4.37
AR(1)4 1.49 1.37 1.25 2.33 2.27 2.16
MA(1)4 1.34 1.35 1.35 1.42 1.43 1.44
ARMA(,1)4 1.41 1.46 1.49 2.01 1.93 1.86
AR(1),, 1.02 1.02 1.02 1.33 1.32 1.32
MA(1), 0.53* 0.53* 0.53* 0.51* 0.52* 0.52*
ARMA(1,1), 0.76* 0.74* 0.72% 1.21 1.16 1.08
AR(1) x MA(1), 1.36 1.39 1.40 1.66 1.59 1.56
AR(1) x MA(1)i2 0.53* 0.54* 0.54* 0.55* 0.54* 0.54*
MA(1) x AR(1)4 241 2.74 3.01 2.60 2.82 3.13
MA(1) x AR(1);2 1.14 1.30 1.56 1.35 1.37 1.42
ARMA(1,1) x AR(1)4 2.08 2.45 2.80 2.17 2.32 2.59
ARMA(1,1) x MA(1)4 1.15 1.16 1.17 1.34 1.29 1.27
ARMA(1,1) x AR(1);, 1.10 1.23 1.47 1.31 1.33 1.38
ARMA(1,1) x MA(1);2 0.49* 0.50* 0.50* 0.51* 0.50* 0.50*

Notes: An asterisk indicates that the algorithm of Shea (1989) is faster than the algorithm described in
Section 3. See Hillmer and Tiao (1979) and Jenkins and Alavi (1981) for guidelines on defining and
building multiplicative seasonal vector ARMA models.

(1989), here there is no clear pattern to be seen in the relative efficiency of the new
algorithm with respect to the dimension m of the model. However, expect for all
the cases with ¢g large and greater than or equal to p, all of the ratios are
advantageous to the new algorithm, irrespective of the values of m and n.

From the comparisons presented above, it seems clear that the new algorithm
performs worse than the algorithms of Shea (1989) and Mauricio (1997) only for
models with ¢ large and, in general, greater than p. This conclusion agrees with
the fact, already stated in Section 1, that the algorithm of Ansley (1979) for
scalar models implies a theoretical operation count which is quadratic in ¢ but
only linear in p. Furthermore, it can be seen from both Table I and Table II that
the new algorithm performs specially well for small to moderate sample sizes,
where computation of the exact likelilhood is better suited against any
approximation.

5. CONCLUSIONS

In this paper, a method for computing the exact likelihood function of vector
ARMA models has been described in detail. The algorithm has been built on
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TABLE 11

RATIOS BETWEEN THE ACTUAL NUMBERS OF TIME-CONSUMING OPERATIONS REQUIRED BY THE ALGORITHM
OF MAURICO (1997) AND THOSE REQUIRED BY THE NEW ALGORITHM, TO EVALUATE THE EXACT LIKELIHOOD
FuncTtioN FOR VARIOUS MODELS

m =2 m =4

Models n=5 n=100 n=200 n=50 n=100 n =200
AR(1) 1.09 1.05 1.03 1.11 1.07 1.04
AR(2) 1.14 1.08 1.05 1.07 1.06 1.04
MA(1) 1.24 1.23 1.23 1.42 1.42 1.42
MA(2) 1.16 1.14 1.13 1.23 1.21 1.20
ARMA(1,1) 1.20 1.20 1.19 1.33 1.35 1.36
AR(1)4 1.19 1.15 1.10 1.05 1.05 1.05
MA(1)4 0.98* 0.92% 0.89* 0.96* 0.89% 0.86*
ARMA(1,1)4 0.98* 0.93* 0.90* 0.99* 0.95* 0.91*
AR(1)2 1.23 1.22 1.20 1.04 1.04 1.04
MA(1), 0.89* 0.66* 0.53* 0.86* 0.62* 0.49*
ARMA(1,1), 0.96* 0.82* 0.68%* 0.98* 0.93* 0.84*
AR(1) x MA(1)4 0.98* 0.92* 0.89%* 0.96* 0.90* 0.87*
AR(1) x MA(1)12 0.90* 0.67* 0.54* 0.87* 0.63* 0.50%*
MA(1) x AR(1)4 1.62 1.74 1.83 1.22 1.35 1.55
MA(1) x AR(1);2 1.34 1.43 1.59 1.06 1.08 1.12
ARMA(1,1) x AR(1)4 1.59 1.73 1.88 1.16 1.26 1.42
ARMA(1,1) x MA(1)4 0.93* 0.85* 0.80* 0.90* 0.81* 0.77*
ARMA(1,1) x AR(1);, 1.33 1.41 1.55 1.06 1.07 1.11
ARMA(1,1) x MA(1);2 0.91* 0.66* 0.53* 0.89* 0.63* 0.49*

Notes: An asterisk indicates that the algorithm of Mauricio (1997) is faster than the algorithm
described in Section 3. See Hillmer and Tiao (1979) and Jenkins and Alavi (1981) for guidelines on
defining and building multiplicative seasonal vector ARMA models.

the innovations method of Ansley (1979) for scalar models, an adaptation that
does not seem to have been published in the past. Apart from possible minor
changes through refinement in coding, the algorithm described in this article
performs quite well with respect to two of the fastest methods currently
available. In fact, there seems to be no computational reason for using any
algorithm other than the one described in Section 3 (especially when n is not
large, so that an exact computation is usually advisable), except for models with
q large and greater than p; for such models, the algorithms of Shea (1989) and
Mauricio (1997) give better results in terms of computational efficiency and
should be used instead.
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